
Supplementary information

This document contains supplementary information to the manuscript enti-
tled “Discovering regulatory and signaling circuits in molecular interaction net-
works” by Trey Ideker, Owen Ozier, Benno Schwikowski, and Andrew F. Siegel.
It particular, we present a sketch of an NP-hardness proof for a simplified

variant of the central search problem. The proof was provided by Richard M.
Karp.
The simplified search problem, termed Maximum-Weight Connected Sub-

graph Problem (MWCSP), for which NP-hardness is proved, has two simplifying
characteristics compared to the search problem discussed in the paper.

1. The MWCSP corresponds to the special case of a single experimental
condition, where each gene has only a single associated score.

2. Compared to the more complex score function for subnetworks in our
manuscript, the MWCSP assumes that the score of a subnetwork is given
by the sum of all its node scores.

Maximum-Weight Connected Subgraph Problem Given a graph G =
(V,E), and a vertex weight zv ∈ R for each v ∈ V , find a connected subgraph
G′ = (V ′, E′) of G with maximum weight zG′ =

∑
v∈V ′ zv.

Theorem 1 The Maximum-Weight Connected Subgraph Problem is NP-hard.

Proof sketch: The optimization version of MINIMUM COVER can be reduced
to MWCSP. We will describe how to construct a graph for any instance of
MINIMUM COVER. We will show how, in this graph, any optimal solution to
MWCSP corresponds to an optimal solution of MINIMUM COVER.
To begin, let C = {C1, . . . , Cm},m ∈ N, be an instance of MINIMUM

COVER. Recall that a solution to the optimization version of the problem is a
minimum subset C′ ⊆ C, such that each element of S = ∪mi=1Ci is contained in
at least one subset in C′.
Denoting the elements of S by s1, . . . , sn, the weighted graph G = (V,E) is

constructed as follows. The node set V of G is given by

V = {s1, . . . , sn, C1, . . . , Cm, H}

G contains two sets of edges. First, H is connected to any node Ci, i = 1, . . . ,m.
Secondly, each node sj is connected to any node Ci, for which sj ∈ Ci. Weights
are −1 on all nodes Ci, and of sufficiently high value (denoted by∞) for all the
other nodes. The figure below gives an example for the MINIMUM COVER
input instance {{s1, s2}, {s1}, {s2}, {s2, s3}}.
Observe that any connected subgraph G′ = (V ′, E′) of G with maximum

weight contains H and all nodes si, due to their high weight. Thus, any con-
nected subgraph can be identified by the set of nodes Cj contained in it.
The critical observation that establishes the proof is that any sets of Cj

contained in a maximum-weight connected subgraphs of G is a minimum cover
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Figure 1: Graph construction for MINIMUM COVER example instance

with respect to the MINIMUM COVER instance, and vice versa. To see why
this is the case, note that, since H is included in G′, connectedness of G′ is
equivalent to the requirement that, for each node si, there is at least one node
Cj ∈ V ′ such that si ∈ Cj . Maximizing the weight of G′ is equivalent to
minimizing of the Cj nodes, which, in turn, is equivalent to minimizing the set
cover represented by the Cj .

Proof sketch writeup by Benno Schwikowski, benno@systemsbiology.org, Jan.
27, 2002


